Human ovarian cancer stroma contains luteinized theca cells harboring tumor suppressor gene GT198 mutations.
نویسندگان
چکیده
Ovarian cancer is a highly lethal gynecological cancer, and its causes remain to be understood. Using a recently identified tumor suppressor gene, GT198 (PSMC3IP), as a unique marker, we searched for the identity of GT198 mutant cells in ovarian cancer. GT198 has germ line mutations in familial and early onset breast and ovarian cancers and recurrent somatic mutations in sporadic fallopian tube cancers. GT198 protein has been shown as a steroid hormone receptor coregulator and also as a crucial factor in DNA repair. In this study, using GT198 as a marker for microdissection, we find that ovarian tumor stromal cells harboring GT198 mutations are present in various types of ovarian cancer including high and low grade serous, endometrioid, mucinous, clear cell, and granulosa cell carcinomas and in precursor lesions such as inclusion cysts. The mutant stromal cells consist of a luteinized theca cell lineage at various differentiation stages including CD133(+), CD44(+), and CD34(+) cells, although the vast majority of them are differentiated overexpressing steroidogenic enzyme CYP17, a theca cell-specific marker. In addition, wild type GT198 suppresses whereas mutant GT198 protein stimulates CYP17 expression. The chromatin-bound GT198 on the human CYP17 promoter is decreased by overexpressing mutant GT198 protein, implicating the loss of wild type suppression in mutant cells. Together, our results suggest that GT198 mutant luteinized theca cells overexpressing CYP17 are common in ovarian cancer stroma. Because first hit cancer gene mutations would specifically mark cancer-inducing cells, the identification of mutant luteinized theca cells may add crucial evidence in understanding the cause of human ovarian cancer.
منابع مشابه
Mutation Analysis of TP53 Tumor Suppressor Gene in Colorectal Cancer in Patients from Iran (Kerman Province)
Objective(s) P53 is an important tumor suppressor, which is mutated in later stages of many cancers and leads to resistance to chemotherapy. The aim of this study was to reveal mutations of TP53 in colorectal cancer in Kerman province. Materials and Methods A total of Forty-three colon cancer specimens as paraffin block or fresh tissues, which passed stage IIIA, were selected. Three exons 5,...
متن کاملExpression Profiles of SnoN in Normal and Cancerous Human Tissues Support Its Tumor Suppressor Role in Human Cancer
SnoN is a negative regulator of TGF-β signaling and also an activator of the tumor suppressor p53 in response to cellular stress. Its role in human cancer is complex and controversial with both pro-oncogenic and anti-oncogenic activities reported. To clarify its role in human cancer and provide clinical relevance to its signaling activities, we examined SnoN expression in normal and cancerous h...
متن کاملInactivation of the mitogen-activated protein kinase pathway as a potential target-based therapy in ovarian serous tumors with KRAS or BRAF mutations.
Activation of mitogen-activated protein kinase (MAPK) occurs in response to various growth stimulating signals and as a result of activating mutations of the upstream regulators, KRAS and BRAF, which can be found in many types of human cancer. To investigate the roles of MAPK activation in tumors harboring KRAS or BRAF mutations, we inactivated MAPK in ovarian tumor cells using CI-1040, a compo...
متن کاملMutations of p53 Gene in Skin Cancers: a Case Control Study
Background: The most frequently mutated tumor suppressor gene found in human cancer is p53. In a normal situation, p53 is activated upon the induction of DNA damage to either arrest the cell cycle or to induce apoptosis. However, when mutated, p53 is no longer able to properly accomplish these functions. The aim of this study was to investigate the expression of p53 gene in cases of skin cancer...
متن کاملMMPS and TIMPS in ovarian physiology and pathophysiology.
The matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) have been postulated to play a critical role in the extracellular matrix (ECM) remodeling associated with follicular development. The gelatinases were localized to the theca of developing follicles and in the stroma of the rodent ovary. Gelatinolytic activity corresponded with the localization of MMP-2 and MMP-9 around the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 288 46 شماره
صفحات -
تاریخ انتشار 2013